USN

17CV42

Fourth Semester B.E. Degree Examination, Feb./Mar. 2022 Analysis of Determinate Structures

Time: 3 hrs .

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define Statically determinate and Statically indeterminate structure.
(04 Marks)
b. Determine the nature and magnitude of forces in all the members of the frame loaded by using method of joints in Fig. Q1(b).
(16 Marks)

Fig. Q1(b)

2 a. What are the Assumptions in the Analysis of trusses?
(06 Marks)
b. Determine the nature and magnitude of forces in all the members of the frame loaded by using method of sections in Fig. Q1(b).
(14 Marks)

Module-2

3 A beam of uniform section measures 10 m long and is simply supported at the ends. It carries concentrated loads of 100 kN and 60 kN at distances of 2 m and 5 m respectively from the left end. Calculate the deflection under each load. Find the maximum deflection also by Macaulay's method. Take $\mathrm{I}=18 \times 10^{8} \mathrm{~m}^{4}$ and $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.
(20 Marks)

OR

4 a. Determine Slope and Deflection of simply supported beam carries a UDL by Moment Area Method
(10 Marks)
b. Determine Slope and Deflection at mid span, when simply supported beam carries a concentrated load at center by Conjugated Beam method.
(10 Marks)

Module-3

5 a. State and prove Castigliano's theorem.
(06 Marks)
b. A simply supported beam $A B$ of span 6.5 m carrying the concentrated load of 46 kN at 2 m from A. Calculate the deflection point on load by Strain Energy method. E $=200 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mathrm{I}=15 \times 10^{-6} \mathrm{~m}^{4}$.
(14 Marks)
OR
6 Determine the slope and deflection at Free End of the cantilever beam shown in Fig. Q6.
(20 Marks)

Fig. Q6

17CV42

Module-4

7 a. Show that the bending moment at any section of a 3 hinged parabolic arch is zero when it is loaded by a UDL throughout its span.
(10 Marks)
b. Show that the profile of the cable is parabolic when the cable is subjected uniformly distributed load throughout its span. Also get the expression for maximum and minimum tension and length of the cable.
(10 Marks)
OR
8 For the three hinged parabolic arch shown in Fig. Q8. Determine the reactions at the support. Draw the bending moment diagram and find the maximum Bm and also find Nominal thrust and radial shear at a distance of 8 m from the right support.

Module-5

9 a. Explain briefly Influence Line diagram.
(06 Marks)
b. Draw the Influence line diagram for shear force and bending moment for a section at 5 m from the left hand support of a simply supported beam 20 m long. Calculate the maximum bending moment and shear force at the section, due to an uniformly distributed rolling load of length 8 m and intensity $10 \mathrm{kN} / \mathrm{m}$ run.
(14 Marks)

OR

10 a. What is Rolling loads and name the categories of loads on beams?
(04 Marks)
b. A uniform load of $40 \mathrm{kN} / \mathrm{m}$ run, 6 m long crossed a girder of 30 m span. Calculate the maximum shear force and bending moment at section 5,10 and 15 m from the left hand support. Construct the maximum shear force.
(16 Marks)

